Publishing in High-Impact Medical Journals

Barry Kramer, M.D., M.P.H.
U.S. National Cancer Institute (consultant)

Disclosure/Disclaimer

- No financial conflicts
- Opinions are mine, not official positions of the U.S. Federal Government
- My perspective:
 - Editor-in-Chief, Journal of the National Cancer Institute: 1994-2012
 - No current affiliation with JNCI

Advance Planning: Study Design Stage

- Discuss the specific hypothesis
 - The best studies are those in which a definitive negative result is as important as a definitive positive
- Decide prospectively on study design
- Define endpoints/outcomes of interest
 - Primary (drives sample size and power calculations)
 - Secondary: most important if the overall primary result is positive
 - Exploratory
- Register in a recognized clinical trials database if a clinical trial (e.g., ClinicalTrials.gov)
- Work with a statistician from day 1
 - Sample size, power calculation, most efficient statistical tests
 - Don't rely on statistical packages

Questions to Address in Medical Research

- What is the exposure and what is the outcome?
- How certain is it that exposure causes outcome?
- How strong is the study design?
- How big is the effect?
- To whom does it apply?
- How important is the outcome?

Relative Importance of Outcomes

Increasing importance

Better test results (X-ray, lab)

Lower PSA

Progression free survival

Less prostate cancer growth

Less complications of disease

Less bone pain

Less death from disease

Less death from prostate cancer

Less death

Overall mortality

The Cover Letter

- Short and to the point
- Describe (and attach) all directly related manuscripts whether published or unpublished by any of the authors
- Planned future analyses of the same study/dataset

Writing Style

- Write for the full readership
- Avoid abbreviations if possible
 - List and define essential abbreviations
 - Use an English editor if necessary

The Abstract

- Structured if an article
 - Background
 - Primary endpoint (secondary and exploratory endpoints if room)
 - Methods
 - Results
 - Conclusions: focus on the primary endpoint
- Results: quantitative
 - Absolute rates if possible
 - Emphasize 95% confidence intervals over P-values
- Conclusions should directly follow from the results

Use and Misuse of P-values

What is a P-value?: A way of gauging whether the observed result might reflect the play of chance:

- Formally, the probability (range 0 to 1) of seeing this result (or a more extreme result) if the intervention actually has no effect
- NOT the probability that the study hypothesis is true
- There is no magic P-value threshold (e.g., P < 0.05)
- Beware of "data dredging" (data torture, P-hacking): cherry-picking the data for a P < 0.05
- Provides NO information on effect size or clinical importance
- Provides NO information on study validity or possible confounding factors

Writing the Methods

- Succinct, but sufficiently detailed to allow replication
- PICO formulation when possible
 - Define the study and control populations
 - Define the intervention
 - Explicit comparisons being made
 - Outcomes: primary, secondary, exploratory
 - How endpoints were assessed
- Informed consent process/animal welfare guidelines
- Randomization methods and blinding

Writing the Methods (cont.)

- Correction for multiple endpoints
- Methods used to authenticate cell lines
- Statistical section
 - Power calculation
 - Statistical tests
 - Planned interim analyses
- Funding source and role

Writing the Methods: Biomarker Studies

- Define the study population and controls
 - o Potential for spectrum bias!
- Clear description of specimen collection/handling in case patients, controls
- Cutpoint determination
 - o Biologic rationale?
 - Standard cutpoint?
 - Sensitivity to endpoint choice?
 - Data driven (cutpoint optimization)?
- Measurement variability
- Potential for verification bias & how avoided

Writing the Results

- Emphasis on health outcomes if a human study
 - Overall mortality
 - Cause-specific mortality
 - Quality of life
- Subgroup analyses: prospective vs. exploratory
 - Sex
 - Ethnic group
 - Risk group
 - Other
- Quantitative outcomes
 - Emphasis on absolute vs. relative rates
 - Emphasis on estimation (with 95% confidence intervals) vs. hypothesis testing

Writing the Discussion

- DIRECT implications of the results
- Context within the field: What's REALLY new?
 - Other prior studies
- Future directions for research
- Study limitations: think hard
 - Threats to internal validity
 - Generalizability
 - Alternative explanations for the findings (think VERY hard)

Confounding Variables

Confounding is the death of any study!

Confounding Variables

Confounding Variables

Confounding is a concern in any observational study!

Confounding is more likely when someone's choice (patient, doctor, etc.) determined who was in the exposed and unexposed group (This even applies to animal studies!)

A Comparison of Observational Studies with Randomized Trials in Oncology

- MEDLINE search (2000-2016) → 350 observational studies,
 121 matching randomized trials
- No significant correlation between HR estimates (correlation coefficient 0.083, 95% CI –0.068 to +0.230)
- No agreement beyond chance (Kappa statistic = 0.037)
- Only 38% of observational HRs fell within the 95% Cis of the matched RCT (more likely to show better survival than RCT)
- No improvement with adjustment for study quality, covariates, propensity weighting, instrumental variables

Payal Soni et al.: J Clin Oncol 37(14): 1209-1216 [2019]

Practices to Avoid

- Ghost writing
- Plagiarism
 - Verbatim duplication of any text from the literature without quotation & the reference is a form of plagiarism
 - Even from your own prior publications
- Grammatical, spelling errors

Important Checklists

Clinical Trials: CONSORT

 Consolidated Standards of Reporting Trials: <u>www.consort-statement.org/</u>

Meta-analyses of Observational Studies in Epidemiology: MOOSE

•JAMA 283(15):2008-2012 (2008)

Meta-analyses of Randomized Trials: QUORUM

- Quality of Reporting of Meta-analyses: Lancet 354:18961900 (1999)
- https://journals.plos.org/plosntds/article/file?type=supplementary&id=info:doi/10.1371/journal.pntd.0000381.s002

Important Checklists (cont.)

Tumor Markers: REMARK

- Reporting Recommendations for Tumor Marker Prognostic Studies: JNCI 97(16):1180-1184 (2005)
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC336 2085/

Microarray and Proteomic Data

- MIAME: Minimum Information About a Microarray Experiment: Nat Genet. 29(4):365-371 (2001)
 - http://fged.org/projects/miame/

Diagnostic Tests: GRADE

- Grading Quality of Evidence and Strength of Recommendations for Diagnostics Tests and Strategies: BMJ 336:1106-1110 (2008)
- https://www.gradeworkinggroup.org/

Thank You